An update on Colony Collapse Disorder and how to get the best pollination this season.
Published April 14, 2011, http://news.msue.msu.edu/news/article/honey_bee_update_and_fruit_pollination
Zachary Huang and Walt Pett, Michigan State University Extension, Department of Entomology
Importance of honey bees to Michigan agriculture
The Western honey bee Apis mellifera plays a crucial role for U.S. agriculture because it provides pollination for a large number of crops. The value of agricultural crops dependent on honey bee pollination was estimated to be $14.6 billion per year in the United States. According to the most recent production data published in October 9, 2009, Michigan’s fruit and vegetable industry produces over $2 billion per year and nearly 50 percent of that value is due entirely to honey bee pollination, or $978 million. This is more than 100 times the value of honey alone, which was $7.4 million in 2008.
The decline of honey bees, a national trend
Despite the importance of honey bees, the beekeeping industry has been in decline since two parasitic mites, varroa (Varroa descructor) and tracheal mites (Acarapis woodi), invaded the United States in the 1980s. Varroa mites have nearly wiped out the feral, or unmanaged, honey bee population in the United States and managed honey bee colonies have been declining mainly due to more complicated management because of the mites. For example, in Michigan alone, the total number of honey producing colonies has decreased from the 95,000 in 1988 to 66,000 in 2009. This is almost a third reduction of managed bee colonies during the last 21 years. About 30,000 of these colonies are “migratory,†whereby beekeepers move their bees to southern states, such as Florida and Georgia, and California to overwinter their colonies, and come back in April for fruit tree pollination.
Varroa mites continue to be the major threat to our honey bees. For the first time since 1998 winter, MSU’s apiary lost 100 percent of its overwintering colonies. Many beekeepers reported losing 80 to 90 percent of their bees last winter. This was the first time at the ANR beekeeping program that all major package bee suppliers were sold out. Package bee prices went up to $70 to $85 per 3 pounds this year. It is likely that pollination prices will be $5 to $10 higher per colony this year, based on the increase of package bee prices.
Colony Collapse Disorder (CCD)
The most recent crisis in honey bee population is called colony collapse disorder (CCD), which has been reported in the national news during 2007. Colonies affected CCD show three symptoms. First, bees “disappeared†from their colonies with no dead bees inside or near the hive. A colony, seemingly healthy in September, will have no bees, or a handful of bees, with a queen, around October or November. The colony will have brood – eggs, larvae and pupae. This suggests adult bees left or died outside the colony quite rapidly. Usually, the colonies are not invaded right away by opportunistic pests such as small hive beetles, wax moths, and other honey bees (bees will take or “rob†honey from a nearby hive) for two to three weeks.
This disorder was reported in 33 different states and affected large beekeepers – 5,000 to 9,000 colonies – reporting losing up to 90 percent of their colonies. In Michigan, only about 6,000 colonies, out of a total of 65,000 colonies, were reported to be affected in 2006. But another Michigan beekeeper reported in February 2008 another loss of 2,300 colonies while pollinating almonds in California. The cause of this disorder is still unknown and honey bee scientists all over the country are studying the problem. A recent paper (Oct. 2010, PLOS One) concluded that a new virus, combined with Nosema ceranae could be the cause of CCD. This work remains to be verified.
Currently, most scientists think it might be a combination of several stresses: by pesticides applied inside for controlling mites and other pests, or outside for controlling pests on crops and brought back by bees; by migratory transportations across several time zones; by novel pathogens (a new nosema disease, Nosema ceranae was found to be present in this country for over 10 years, yet we only learned that it was here because of the CCD crisis); by the varroa mite, which suppresses the immune system of bees; and by the many types of viruses the mite transmits. IAPV is just one of the 20 viruses bees can be infected with. Other common viruses include acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), Kashmir bee virus (KBV), and sacbrood bee virus (SBV). The cause(s) for CCD has not yet been identified as of today.
Importation of package bees from Australia was stopped this year due to the accidental introduction of the Asian honey bees (Apis cerana) into the Brisbane area from the Solomon Islands. This is yet another reason to secure bee colonies for pollination earlier this year.
In light of these problems of honey bees, the growers are urged to work even more closely with beekeepers to ensure good pollination results. We feel that the following steps can help growers to optimize their fruit and vegetable pollination.
Understand basic honey bee biology and behavior
Understanding some basic bee biology and beekeeping will facilitate your inspection of the hives, gauging of quality and strength of the hives, and help maximize the use of bees for your pollination.
Social structure. Honey bees are social insects and only the sterile female workers do all the in-hive work, such as cleaning, drying nectar into honey and feeding young, and outside work, such as foraging for water, pollen, nectar and propolis, and colony defense. The queen’s only job is to lay about 2,000 eggs per day and releases queen mandibular pheromone to let the workers know that she is present and healthy. The male’s, or drones, only job is to mate with queens and are produced only during May to August. A typical colony of bees has about 30,000 workers, one queen and a few to hundreds of drones. About a third of these workers are foragers. Foragers show flower constancy so that they tend to focus on flowers of a single species, resulting in more efficient pollination.
Internal factors affecting foraging behavior. To provide adequate pollination, honey bee colonies must be of sufficient strength, free of diseases, and have a laying queen with enough brood. A newly installed package bee colony, with 2 pounds of bees, would have about 9,000 to 11,000 workers and is considered on the weaker side. Such a colony would concentrate heavily on brood rearing and only have about 1,000 to 2,000 foragers. Only stronger colonies would send out about 30 percent of bees as foragers. A typical median strength overwintered colony would have about 30,000 workers and can send out 10,000 foragers. If you are comfortable checking bees and have the beekeepers permission, check for the presence of chalkbrood, American foulbrood and varroa mites. In general, three to five frames of solid brood suggest a fertile queen and a healthy colony.
External factors affecting foraging behavior. Environmental factors also affect honey bee foraging. Bees do not work in the rain and work less on cloudy days. Foraging activity is positively related to temperature, with a linear relationship from 60°F to 90°F. Bees slow down when it gets too hot – over 90°F. High winds, above 20 mph, will also inhibit flying activity. Bees tend to fly lower, near the orchard floor when winds are high.
Finding a beekeeper nearest to you
Zachary Huang has established a database of beekeepers willing to provide pollination services, with over 420 beekeepers registered. The majority of them are from Michigan. Go to http://cyberbee.net/, click Beebase on the left, then click the number two option under Search Information From the Databases, “For beekeepers providing pollination services,†and you have a choice to search beekeepers by area code, county, zip code or a last name. Once you have a working relationship with a beekeeper, it is best to keep working with the same one year after year.
Pest management during pollination
Do not apply broad-spectrum insecticides when flowers are open. Bee hives should be removed immediately after pollination if post-bloom pesticide applications are planned. By monitoring for pest problems carefully during bloom, growers can help minimize the need for pest control. If an insecticide application is necessary during bloom, the compounds that are least toxic to bees should be used with careful observation of the pollinator-restrictions on the label. In general, dust form is more harmful to honey bees, and morning or day applications are not as safe for bees as evening applications. Inform the beekeeper before a spray so that colonies can be shut down for one to two days with wetted burlap blocking entrances, if highly toxic insecticides have to be sprayed. This pesticides database lists the toxicity of various pesticides to honey bees.
Different strategies for different crops
Use the “early†strategy for tree fruits. For tree fruit crops, it is advantageous to have bees working the flowers as soon as they open. This provides multiple benefits. It improves the odds that fertilization will occur before the ovules start to lose vigor, which can happen in only three days on some crops. Flowers are more likely to receive the multiple visits needed to deposit enough pollen. In many crops, it is important to pollinate the first flowers, like cherry, or “king blossoms,†like apple, because they set the best fruits.
Use the “late†strategy for small fruit crops
Generally, flowers of small fruit crops are less attractive to honeybees than other flowers due to flower shape and less nectar, so the opposite strategy is used. Let the crop start to bloom before bringing bees in so that bees tend to forage more on your crop. If brought in too early, bees will learn to forage elsewhere and when crops bloom, they are not attractive enough to get the bees “back” to where you want them. Blueberry flowers have about three days to be pollinated after the flowers open, but you want the bees to stay in the field, so move bees into blueberry fields after 5 percent bloom, but before 25 percent of full bloom. The “late” strategy is especially important for cranberries, which is not very attractive to bees. Luckily, cranberry flowers will stay open for a while if not pollinated, and the petals will turn to a rosy color if not pollinated in time. In cranberries, it is better to wait until 10 percent bloom in order to maximize the yield. If you see too many flowers turning rosy, this means you did not have enough pollinators, so make sure you increase the number of bee hives next year.
Hive density recommendations
Because Varroa mites had wiped most of our feral honey bee populations, recommended rates for pollination prior to 1987 have to be increased to compensate the lack of “free†honey bees. The table below lists recommended rates for hive density. From an economic point of view, it is best to start with the highest number of hives you can afford, then cautiously reducing it the following year to see if your yield is affected. An alternative method is to place different densities of honey bee colonies in separate orchards and determine if there is a difference in yield.
Table 1. Recommended density of honey bee colonies per acre for Michigan crops.
Internet resources
Acknowledgements and references
CCD Working Group. 2007a. Map of CCD distribution. http://www.ento.psu.edu/MAAREC/pressReleases/CCDMap07FebRev1-.jpg
CCD Working Group. 2007b. Map of CCD distribution. CCD Frequently Asked Questions (FAQ). http://www.ento.psu.edu/MAAREC/FAQ/FAQCCD.pdf
Kraus, B. & R.E. Page, Jr. 1995. Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apismellifera(Hymenoptera: Apidae) in California. Environmental Entomology 24: 1473-1480
McGregor, S. E. 1976. Insect pollination of cultivated crop plants. USDA-ARS, Washington, D.C. available on line: http://gears.tucson.ars.ag.gov/book/
Morse, R. A., and N. W. Calderone. 2000. The value of honey bees as pollinators of U.S. crops in 2000. Bee Culture: 2-15. online: http://www.masterbeekeeper.org/pdf/pollination.pdf
NASS 2011.http://www.nass.usda.gov/Surveys/ Guide_to_NASS_Surveys/ Bee_and_Honey/index.asp. Visited April 13, 2011.